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AN ASCENT EXISTENCE AND UNIQUENESS PROOF
FOR LINEAR ORDINARY DIFFERENTIAL EQUATIONS1

E. J. Pellicciaro

1. Introduction. The typical existence and uniqueness

theorem for initial value problems for linear ordinary
differential equations is traditionally obtained as a
corollary to anm initial value problem for a linear or non-
linear vector differential equation. This paper gives a
method of ascent proof which, starting with the solutions of
the first order linear differential equation, describes
inductively the solutions of the n-th order equation in terms
of those of the n-lst order. The proof provides a representa-
tion formula which can easily be verified by direct sub-
stitution to be a solution indeed. Particularly interesting
is the manner in which the solutiomsof the n-lst order
equation appear in the formula, e5pécially in connection
with their role in the generation of linearly independent
solutions. A second form, a Volterra form, of the solution
is included. Merit of the first is seen in its simplicity,
in both derivation and form, and in its adaptability to
verification., The method itself is a counterpart of the

method of reduction of order.
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2. The Inductive Assumption. Let Pis-++» P, De

continuous functions on the bounded closed interval I
containing the point x = 0. Define the k-th order linear

differential operator L, for k=1,..., n symbolically by

k k-1
ka=y()-p1y( ) - . DY

In statements of initial value problems Vo> Yés- s yén-l)

denote as is the custom arbitrary numbers.

In order to implement the inductive argument presented,
the following assumption concerning the solutions of

L,.1y = 0 is made.

Assumption. The initial value problem Ln_ly = 0,

y(0) = Yoo o0 yén-z)(O) = yén-Z) has exactly one solution.

The assumption is trivially valid for =n = 2. 1In

~fact, a function P 1is a solution of Ly = 0, y(0) = Yo

X
if and only if f(x) = yoexRI pl(s)ds for x ¢ I.
o .

To further implement the argument, the following
theorem, an easy consequence of the assumption, is stated
without proof. The theorem and its proof presumes only the
most elementary knowiedge of the Wronskian as required by
the simple and effective method of variation of parameters.
The somewhat more sophisticated Green's function method

could be used if one prefers.
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Theorgm 1. Let wuy,..., u, ; be solutions of

L.y = 0 satisfying u§i-1)(0) = 64 i=1,..., n-1.

j’
Then, a function @ is a solution of the initial value

problem
Ly =p, (0 =y ..., yP D (0) = y{m-D
if and only if
P(x) = ygu () + ... + vy )

X
+ j G(x,s)pn(s)ds, x € I,
o

where
G(x,s) = {ul(x)wl(s) + ...+ un_l(x)Wn_l(s)]/W(s)

in which W 1is the Wronskian of Ujyeeey U

-1 and Wj is

the cofactor of u§n-2) in W, with the agreement that

Wl(s) =1 when n = 2,

3. An Equivalent Integral Equation. Assume that f is

a solution of the initial value problem
‘ -1 -1
(1) Ly=0, 30 =y_,..., y®D =y,

Then, for x ¢ I,
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(2) L.10/(x) = p_(x)f(x),
pr0) = y/l,..., p(™-1) gy = yén'l)

from which, in the presence of theorem 1, it follows that

s 1is uniquely described by
(3) Br(x) = yiug(x) + ..o+ y$8Pu L (x)
X
+ f G(x,s)p (s)P(s)ds, x €¢I,
o
so that

x -1
(4) P(x) =y, + f [ylu(e) + ... + yén )un_l(t)]dt
o
x t " dsd
+ G(t, t, I.
J ] etesorp(s)h(s)ds X €

Conversely now, if @ is a continuous function on I for
which (4) holds with Upyeeey Ugg and G as per theorem 1,
then (’ exists on I and is in fact given by (3). From

- this then it is easily argued with.the aid of knowledge of
the method of variation parameters (or the properties of
Green's function) that §“,..., ﬁ(n) also exist on 1 and
moreover that @' satisfies (2) for x ¢ I. Thus, § is a

solution of (1) since, from (4), @(0) = Y,- This completes

the proof of the following equivalence theorem.
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Theorem 2. A continuous function $ on I 1is a

solution of (1) if and only if @ satisfies (4).

4. The Solution. The problem of finding a solution of

(1) is equivalently replaced by the problem of finding a
continuous function @ on I for which (4) holds. The
task is notationmally simplified with the introduction of
the linear double integral operator S defined for con-

tinuous functions £ on I by
X t
Sf(x) = f j G(t,s)p (s)£(s)dsdt, x ¢ I.
ov o

Clearly, if f 1is continuous on I, so is Sf, hence so
is S8Sf. For continuous functions f on I then, define

S°f = £, S'f = Sf, and then S%f =ss¥"’f for k=1, 2,...

Concerning Sk, the following two lemmas prove useful

in the statement and proof of theorem 3 below. As their

proofs are straightforward, they are omitted.

Lemma 1. Let f be a continuous function on I,

hence bounded on I by say M. Then sKf  is continuous

on I; moreover, there exists H such that Skf(x MHk/k!
; <

for k=20,1, 2,... and x ¢ I.

Lemma 2, If £ 1is continuous on I, then § skg
k=0
converges uniformly to a continuous function on 1I.
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Theorem 3. Let £ be a continuous functionm on 1I.
Then there exists one and only one continuous function §

[¢+]
on 1 for which @ = f + Sf; indeed, @ = ESkf.
k=0

Proof. That @ = £+ SPp for O so given is
immediate in the presence of lemma 2. The uniqueness of
 is a consequence of lemma 1. For if V¥ is continuous
on I and Y = £+ SY, then @ - ¥ = S(p - ¥) implies
b - ¥ = Sk(ﬂ -Y¥), k=1, 2,..., and hence in turn that

p = Y via lemma 1.

Corollary. A function @ is a solutiom of (3)
LoroLiary

if and only if

(5) 960 = [, iy ® oy @lan, xe 1
k=0 o

Agreeing that skf = sk when £(x) 1, a set of

m

linearly independent solutions Yis+-+s Yq such that

y§i-l)(0) = 645> 1=1,..., n, generated by (5) is given by

y 00 = Y 8500,
k=0

(223 k X
yj(x) = E:S f uj_l(s)ds, j=2,..., n.
k=0 ©
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5. The Case n = 2, The second order linmear equationm,

interesting in itself, deserves individual attention. For

this case the integral equation (4) becomes

X
p(x) =y, + ygjomt)dt
X €
+ f J E()E"N(s)py(s)P(s)dsde, x ¢ I,
oY o

where E(x) = expfxpl(s)ds and E'l(x) = 1/E(x). The
o)

function § defined by

o] k X
= S + y'[ E(s)ds), I.
P (x) kzo (vo + ¥5[ E(s)ds) X €

is the unique solution of L,y =0, y(0) = Yoo y’(0) = yé.
A pair of linearly independent solutions of L,y = 0 is

the pair

X t1 -1
y 0 =1 +jo fo E(t;)E "(s;)p,(s,)ds dt,

X t s, t,
2 -1 2 1 -1
+ fo fo E(t))E " (s,)p,(s,) jo fo E(t)E " (s;)p,(s,)ds dt ds,dt,
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“E(e) e 5 e 3p, (e [ LECE)

y,(x) = [ E(t)dt + E(t )E “(s,)p,(s E(t)dtds, dt

2 fo fofo 1 lZlfo 171

x b2 -1 2 o1 -1 81
+f f E(t,)E (sz)pz(sz)f f E(t,)E (sl)pz(sl)f E(t)dtds dt ds,dt,
(o] [o] o (o] (o]

A comparison of the solution

X
y(x) = yEG) + [ EGE T (s)py(s)ds
0

of Liy = P, &(O) =Y, with the integral equationm and

the pair Yi> Y2 is worthy of mnote.

6. A Simple Reduction of the Integral Equation to a

Volterra Equation. With the restriction that £ be con-

tinuous on I and x ¢ I, a change in the order of
integration in Sf results in

X
SE(x) =j g(x,s)£(s)ds,
(o]

where

X

g(x,8) = [ G(c,8)p (s)de,  x,8 ¢ I.
S
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With this then, (&) assumes the form

X
(6) p(x) = £(x) +j g(x,s)@#(s)ds,
(o]

a Volterra integral equation. Borrowing from the theory of

suca equations, the unique solution of (6) for £ continuous

on 1 1is

(7) P(x) = £(x) + fxx(x,s)f(s)ds,

o

where K 1is the resolvent of g defined for x,s ¢ I Dby
(28]
K(x,8) = ) K(x,8)
k=0
with K, =8 and
X
Kk(x,s) = j g(x,t)Kk_l(t,s)dt, k=1, 2,...
S

That sz converges uniformly in (x,s) - to K, continuous

in (x,s) for x,s ¢ I, 1is immediate because every K, is
continuous in (x%,s) for x,s ¢ I and because, moreover,
there exists M and H such that th(x,s)] < MHk/kl,
k=0,1, 2,... and x,s ¢ I.
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The solution of (6), hence of (4), hence of (1), in

the form of (7) can also be obtained by observing that

X
Skf(x) = J g(x,s)Sk-lf(s)ds, k=1, 2,...
o

so that, after appropriate changes in the order of integrationm,
k x |
S f(x) = I K _1(x,8) £(s)ds, k=1, 2,...
o

and hence that

o X
ZSkf(x) = £(x) + j K(x,s)£(s)ds,
k=0 ©

in view of uniform convergence.
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